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Abstract

The recently devised one-dimensional parabolic spline method (PSM) for efficient, conservative, and monotonic remap-
ping is introduced into the semi-Lagrangian inherently-conserving and efficient (SLICE) scheme for transport problems in
multi-dimensions. To ensure mass conservation, an integral form of the transport equation is used rather than the differ-
ential form of classical semi-Lagrangian schemes. Integrals within the SLICE scheme are computed using multiple sweeps
of PSM along flow-dependent cascade directions to avoid the large timestep-dependent splitting errors associated with tra-
ditional fixed-direction splitting. Accuracy of the overall scheme, including at large timestep, is demonstrated using two-
dimensional test problems in both Cartesian and spherical geometries and compared with that of the piecewise parabolic
method (PPM) applied within the same SLICE framework.
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AMS: 65M99; 76M25

Keywords: Advection; Cascade; Conservation; Monotonicity; PPM; Remapping
1. Introduction

Semi-Lagrangian (SL) schemes [1] are widely used in atmospheric modelling due to their improved stability
compared to their Eulerian counterparts, and to the substantial computational savings concomitant with using
large timesteps. However, unlike some Eulerian schemes, the lack of mass conservation with SL schemes can
be problematic for relatively long-time integrations, such as those for climate studies [2].

The lack of formal mass conservation in SL schemes has been dealt with by either: (i) applying a posteriori
corrections, whereby the original global mass is restored by redistributing the deficit/surplus to minimally
change the solution [3] (similar approaches have also been used for non-conservative Eulerian schemes [4]);
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or (ii) using inherently conserving schemes, whereby the conservation constraint is an integral part of the
scheme, i.e. conservative remapping [5–16]. Such schemes are finite/control-volume methods, in that they
are all based on estimating integrals of the conserved quantity over a deformed Lagrangian volume (see
Section 2 for details). Recently, Lauritzen [17] has given an analysis of some of these schemes.

Although inherently conservative SL schemes are mathematically well formulated, they tend to be more
expensive and difficult to generalise to higher dimensions without a substantial increase in computational cost.
Therefore, much of the research in this area has been centered on how to remap a multi-dimensional field in an
efficient way to allow the flexibility of using higher-order schemes but without a prohibitive computational
overhead. To overcome these conflicting criteria, SLICE [18,19] combines a piecewise cubic method
(PCM), which is a higher-order alternative to the popular piecewise parabolic method (PPM [20]), with the
cascade (flow-dependent decomposition) approach [21]. Building on the previous development of this scheme,
a more efficient variant of SLICE, based on the parabolic spline method (PSM) [22], is presented herein. An
advantage of PSM is that of all piecewise parabolic functions that satisfy a given mass (average density) dis-
tribution, such as the one used by PPM, PSM is an optimal reconstruction since it possesses the minimum
norm (or curvature) and best approximation properties [22]. Furthermore, an operation count shows that
PSM is 60% more efficient than PPM, and its monotonic filter damps less than PPM’s.

The purpose of the present work is to: (i) outline how the one-dimensional (1D) PSM algorithm (and also
the PPM algorithm) can be exploited in multi-dimensions using the SLICE cascade directional decomposition
strategy; and (ii) demonstrate that PSM’s 1D accuracy advantages over PPM also hold for typical 2D test
problems of the literature in both Cartesian and spherical geometries.

The rest of the paper is organised as follows: Section 2 outlines the strategy for incorporating the 1D PSM
[22] and PPM [20] remappings into the SLICE cascade framework; in Section 3 results of several illustrative
tests in Cartesian and spherical geometry are given; and conclusions are summarised in Section 4.

2. 2D remapping with SLICE

This section briefly outlines how the 1D PSM [22] and PPM [20] remappings can be efficiently incorporated
into a general strategy to solve higher dimensional (here 2D) problems by using the SLICE methodology
[18,19].

2.1. 2D advective transport

Consider (see e.g. [11]) passive 2D advective transport of a scalar quantity q governed, in the absence of
sources and sinks, by
oq
ot
þr � ðquÞ ¼ 0; ð2:1Þ
where q is the density (amount of scalar per unit volume) of the transported quantity, and u and t are the
transporting velocity field and time, respectively. Let dV be a material volume (strictly an area here as only
two dimensions are considered) that moves with the fluid. Then an equivalent integral form of the conserva-
tion equation (2.1) is
D

Dt

Z
dV

q dV

� �
¼ 0; ð2:2Þ
where D/Dt is the total derivative following the fluid. Integrating (2.2) from time t0 to time t1 gives
M1 ¼ M0; ð2:3Þ

where M1 �

R
dV1

q dV, M0 �
R

dV0
q dV, and dV1 is the fluid volume at time t1 that corresponds to the vol-

ume dV0 at time t0. Now let dV1 be a known grid volume, fixed in time, with q1 being the associated value of
the scalar averaged over this volume, so that M1 ¼ q1dV1. In this context dV1 is then an Eulerian control
volume (ECV) whereas dV0 is its corresponding Lagrangian control volume (LCV). Then the problem
simplifies to computing the discrete integral M0, which is a remapping of a given average field �q at time t0

on regular ECV’s to irregular LCV’s.
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2.2. Cascading with SLICE

SLICE [18,19] exploits the cascade directional decomposition strategy first introduced in [21]. Referring to
Fig. 1, the SLICE strategy is now briefly reviewed for Cartesian geometry.

2.2.1. Eulerian and Lagrangian control volumes

Define ECV’s (e.g. the rectangle ‘‘abcd’’ in Fig. 1) to be the cells of a regular Eulerian mesh such that
ECVi;j � ½xi�1=2; xjþ1=2� � ½yj�1=2; yjþ1=2�, with corners denoted by open (red) circles. The centers of ECV’s,
denoted by solid (red) circles, are located at the intersection of centered Eulerian (continuous thin red) lines
xi and yj, where xi � ðxi�1=2 þ xiþ1=2Þ=2, yj � ðyj�1=2 þ xjþ1=2Þ=2.

The locations of the corners of the associated LCVi,j’s (e.g. the quadrilateral ‘‘ABCD’’ in Fig. 1), denoted
by open (blue) squares, are determined by a second-order-accurate backwards integration in time (from time t1

to time t0) of the trajectory equation
Fig. 1.
circles
and yj

contin
dashed
Lagran
are lab
‘‘ABC
Dx

Dt
¼ u; ð2:4Þ
where x is 2D position vector [18,19]. The union of all LCV’s defines a Lagrangian mesh comprised of
bounding Lagrangian lines X i�1=2, X iþ1=2, Y j�1=2 and Y jþ1=2, which are denoted by continuous (blue) thick
lines. The intersection points, denoted by open (red) triangles, of bounding Lagrangian lines X i�1=2 with Eule-
rian center lines yj can then be computed. Centered Lagrangian (dashed blue) lines then connect the mid-
points (solid blue squares) of adjacent bounding Lagrangian (solid blue) lines Y j�1=2 to one another in a
piecewise manner.

The 2D remapping is achieved through multiple sweeps of a 1D remapping algorithm (herein either PSM
[22] or PPM [20]): first along the centered Eulerian lines yj of aligned ECV’s, then along the centered Lagrang-
ian lines Xi of aligned LCV’s.

2.2.2. 1st cascade

The first cascade, performed along centered Eulerian yj lines, remaps mass from ECV’s to intermediate
ECV’s (IECV’s). These IECV’s are (from a visualisation perspective – see Fig. 1) bounded in the y direc-
tion by yj�1=2 and yjþ1=2, and bounded in the x direction by Eulerian lines that are parallel to the y axis and
Superposition of Eulerian (x,y) and Lagrangian (X,Y) grids. Centers of ECV’s, where data are held, are denoted by solid (red)
and corners by open (red) circles; bounding lines xi�1=2 and yj�1=2 of ECV’s by continuous thin (red) lines; centered Eulerian lines xi

by dashed thin (red) lines; corners of LCV’s by open (blue) squares; bounding Lagrangian lines X i�1=2 and Y j�1=2 of LCV’s by
uous thick (blue) lines; midpoints of bounding Lagrangian lines Y j�1=2 by solid (blue) squares; centered Lagrangian lines Xi by thick

(blue) lines; intersections of Lagrangian lines X i�1=2 with Eulerian lines yj by open (red) triangles; and intersections of centered
gian lines Xi with centered Eulerian lines yj by solid (green) triangles. Corners of ECVi,j and LCVi,j (the departure volume of ECVi,j)
elled ‘‘abcd’’ and ‘‘ABCD’’, respectively; and shown as open crossed circles and squares respectively. Note however that ‘‘abcd’’ and
D’’ do not overlap, as they do in this schematic, when the local Courant number is greater than unity.
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that pass through the intersection points (denoted by open (red) triangles) of bounding Lagrangian lines
X i�1=2 with Eulerian center lines yj. Since the width Dyj � yjþ1=2 � yj�1=2 of these IECV’s remains constant
along yj, the 1D PSM [22] or PPM [20] algorithms are used to remap mass from the original ECV’s to the
IECV’s.

2.2.3. 2nd cascade

The mass of each IECV, now known, is considered to be a point mass concentrated at the intersection
points (denoted by solid (green) triangles) of a centered Lagrangian line Xi with a centered Eulerian line yj,
i.e. to be a point mass concentrated at the approximate center of mass of each IECV. To prepare for the sec-
ond cascade, these concentrated masses are first notionally re-assigned from IECV’s to intermediate LCV’s
(ILCV’s) that are aligned along the centered Lagrangian lines Xi. The individual ILCV’s along Xi are bounded
in the Y direction by Lagrangian lines passing through points located midway between two consecutive ‘‘cen-
ter-of-mass’’ points (denoted by solid (green) triangles) along Xi. In the X direction they are bounded by X i�1=2

and X iþ1=2 : DX i � X iþ1=2 � X i�1=2 is constant in this Lagrangian coordinate system. Knowing the mass distri-
bution of ILCV’s, the second cascade is then performed along centered Lagrangian Xi lines to one-dimension-
ally remap mass (again using either PSM [22] or PPM [20]), from the assumed centers of mass of the ILCV’s
(solid (green) triangles) to the assumed centers of mass of the LCV’s, i.e. the midpoints between the solid (blue)
triangles along Xi. Here, distances along the piecewise-defined Lagrangian (dashed blue) lines Xi, for both
remapping algorithms, are computed as cumulative physical distance.

2.2.4. Average densities at time t1 on the Eulerian mesh

The masses of the LCV’s at time t0 are now known. These masses are then transported to their arrival
ECV’s, and the average densities at the new timestep are obtained from the mass of the LCV’s and the volumes
(areas) of the ECV’s. Note that no knowledge of the complex 2D geometrical details of the individual
Lagrangian cells is required or computed at any stage. This confers a significant efficiency advantage on
the SLICE methodology over fully geometrical remapping algorithms.

2.2.5. Spherical geometry
For applications in spherical geometry, the same methodology is applied except that: (i) the Cartesian grid

(x,y) is replaced by a standard latitude–longitude grid (k,/); (ii) points on the spherical grid are connected
using great circle arcs; and (iii) due to the singularity of the poles, careful treatment in polar regions is required
– see [19] for details.

3. Numerical examples

Standard tests from the atmospheric modelling literature for solid-body rotation and deformational flow,
in both 2D Cartesian and spherical geometries, are used to assess the performance of the SLICE scheme in
combination with either the PSM or PPM remappings. For simplicity, and also to focus on the compar-
ative impact of the PSM and PPM remapping algorithms, the semi-Lagrangian trajectories (obtained by
solving (2.4)) are determined analytically for all test problems as in [22,23]. In all the test problems used
here, the initial and analytical solutions are obtained by simply sampling the analytical expressions at
the required locations and times (i.e., assuming that the given functions are representations of �q). An alter-
native approach would be to assume that the given functions are representations of q, and then to integrate
these to obtain �q. A previous study [18] found that the conclusions drawn from the results are independent
of the choice of the approach as long as the schemes are compared with the same choice in a consistent
manner.

To simplify nomenclature within this section, ‘‘PSM’’/‘‘PPM’’ signifies the use of PSM/ PPM within the
SLICE framework [18] without their respective monotonicity filters activated: similarly for ‘‘PSM-M’’/
‘‘PPM-M’’ but with activation of their monotonicity filters – see [22,23] for details of the filter applied to
PSM, and [20] for details of that applied to PPM. Thus all four SLICE schemes (denoted by PSM, PPM,
PSM-M and PPM-M) differ only in their reconstruction module. Also, an entry of ‘‘0.00000’’ in an error table
denotes zero to the given number of decimal places whereas ‘‘0’’ denotes a value that is identically zero.
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3.1. Performance measures

Performance is measured using the same error measures as suggested by [24], namely:
Table
Compa

PSM
PPM
PSM-M
PPM-M

Table
Compa

PSM
PPM
PSM-M
PPM-M
l1 �
Iðjqnum � qanjÞ

IðjqanjÞ ; ð3:1Þ
1
rative errors for solid-body rotation of a cosine hill on a plane

l1 l2 l1 lmin lmax

0.15099 0.08537 0.06128 �0.02031 �0.06128
0.24439 0.13454 0.11648 �0.03033 �0.11648
0.09354 0.06625 0.05455 0 �0.05205
0.23563 0.22557 0.34744 0 �0.34744

a b

c d

Fig. 2. Solid-body rotation of a cosine hill after 1 rotation: (a) PSM; (b) PPM; (c) PSM-M; and (d) PPM-M.

2
rative errors for solid-body rotation of a slotted cylinder on a plane

l1 l2 l1 lmin lmax

0.19174 0.21418 0.63417 �0.13876 0.14290
0.22298 0.23625 0.65472 �0.16810 0.14915
0.17344 0.22175 0.67874 0 �0.00006
0.18723 0.23313 0.72406 0 0.00000



Fig. 3. Solid-body rotation of a slotted cylinder on a plane after 1 rotation: (a) PSM; (b) PPM; (c) PSM-M; and (d) PPM-M.

Table 3
Comparative errors for solid-body rotation of a cosine hill on a sphere after one rotation as a function of rotation axis: Dt ¼ Dt0 and 256
timesteps for all experiments

l1 l2 l1 lmin lmax

(a) Cross-polar flow: a ¼ p=2
PSM 0.07947 0.05379 0.04874 �0.01772 �0.02593
PPM 0.10304 0.06479 0.05520 �0.03103 �0.02993
PSM-M 0.05724 0.04597 0.04256 0 �0.03320
PPM-M 0.10909 0.10182 0.11796 0 �0.11342

(b) Equatorial flow: a ¼ 0
PSM 0.04969 0.03358 0.02689 �0.01551 �0.01352
PPM 0.06965 0.04488 0.03499 �0.02105 �0.01851
PSM-M 0.02711 0.01947 0.01792 0 �0.01792
PPM-M 0.10083 0.09538 0.11474 0 �0.11474

(c) Diagonal flow: a ¼ p=4
PSM 0.05944 0.03264 0.02191 �0.01308 �0.01379
PPM 0.08305 0.04629 0.03055 �0.02018 �0.01393
PSM-M 0.02878 0.02022 0.02486 0 �0.02217
PPM-M 0.07802 0.08618 0.15918 0 �0.15718

(d) Quasi-cross-polar flow: a ¼ p=2� 0:05
PSM 0.07743 0.05216 0.04348 �0.01614 �0.02422
PPM 0.11112 0.06660 0.05031 �0.04593 �0.02805
PSM-M 0.05577 0.04472 0.04402 0 �0.02994
PPM-M 0.10871 0.10195 0.12437 0 �0.11667

940 M. Zerroukat et al. / Journal of Computational Physics 225 (2007) 935–948
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l2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðð½qnum � �qan�Þ2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið½�qan�2Þ

q ; ð3:2Þ

l1 �
maxðj�qnum � �qanjÞ

maxðj�qanjÞ ; ð3:3Þ

lmin �
minð�qnumÞ �minð�qanÞ
maxð�qanÞ �minð�qanÞ ; ð3:4Þ

lmax �
maxð�qnumÞ �maxð�qanÞ
maxð�qanÞ �minð�qanÞ ; ð3:5Þ
where �qnum and �qan refer to the numerical and analytical solutions, respectively,
Ið�qÞ �
X

i

X
j

�qi;jAi;j ð3:6Þ
is a global integral (or global mass), and �qi;j is the average density at the center of ECVi;j whose area is
Ai;j ¼ ðxiþ1=2 � xi�1=2Þðyjþ1=2 � yj�1=2Þ in Cartesian geometry and Ai;j ¼ ðkiþ1=2 � ki�1=2Þðsin /jþ1=2 � sin /j�1=2Þ
in spherical geometry on a sphere of unit radius.
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Error norms versus time for solid-body rotation of a cosine hill on a sphere with a cross-polar flow (a ¼ p=2) and with Dt ¼ Dt0

(a) PSM, (b) PPM, (c) PSM-M and (d) PPM-M.
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3.2. 2D transport on a plane

3.2.1. Solid-body rotation of a cosine hill on a plane

This is the cosine-hill problem of Section 4(c) of [18]. The parameter values are (see [18] for parameter def-
initions): X ¼ ½0; 32� 105 m�2 (domain dimensions); x ¼ 10�5 s�1 (angular velocity); Nx ¼ N y ¼ 32 (number
of ECV’s in x and y directions, respectively); number of timesteps = Nt = 71 (1 rotation); Dt ¼ 2p=ðxN tÞ ’
8849:56 s (timestep length); C ’ 2 (maximum Courant number); �q0 ¼ 100 (initial maximum value);
c ¼ 8� 105 m, r ¼ 4� 105 m (parameters to define the cosine hill); ðx0; y0Þ ¼ ð7:5� 105 m; 15:5� 105 mÞ (ini-
tial location of hill center); and ðxc; ycÞ ¼ ð15:5� 105 m; 15:5� 105 mÞ (location of center of rotation).

The errors of PSM, PPM, PSM-M and PPM-M for this problem after one rotation are summarised in
Table 1, with their corresponding fields displayed in Fig. 2 over a subdomain of the full domain. It is seen
from Table 1 that PSM is more accurate than PPM for all error measures, and similarly for PSM-M vs.
PPM-M. In particular, PSM-M is significantly more accurate than PPM-M. PSM-M (see Fig. 2(c)) acts like
a positive-definite filter to correct undershoots whilst leaving the remainder of the hill intact. However, in
addition to removing undershoots in a similar manner to PSM-M, PPM-M excessively clips the hill’s summit
(see Fig. 2(d)). This illustrates the more discriminating behaviour of PSM’s monotonicity filter in the presence
of local extrema.

3.2.2. Solid-body rotation of a slotted cylinder on a plane

This is the slotted cylinder problem of Section 4(b) of [18]. The parameter values are (see [18] for parameter
definitions): X ¼ ½0; 100�2 (computational domain); x ¼ 0:3635� 10�4 s�1 (angular velocity); Nx ¼ N y ¼ 100
(number of ECV’s in x and y directions, respectively); number of timesteps = 96 (1 rotation);
Dt ¼ 2p=ðxNtÞ ’ 1800:55 s (timestep length); C ’ 3:27 (maximum Courant number); �q0 ¼ 1 (initial maximum
value); c ¼ 25, r ¼ 15, sw ¼ 6, sl ¼ 25 (parameters to define the slotted cylinder); ðx0; y0Þ ¼ ð25; 50Þ (initial
location of cylinder center); and ðxc; ycÞ ¼ ð50; 50Þ (location of center of rotation).

The errors of PSM, PPM, PSM-M and PPM-M for this problem after one rotation are summarised in
Table 2, with their corresponding fields displayed in Fig. 3. It is seen from Table 2 that, as for the previous
problem, PSM is again more accurate overall than PPM, although now by not so great a margin. Both
PSM-M and PPM-M remove the spurious undershoots and overshoots that occur near cylinder edges
Table 4
As in Table 3 but Dt, and the number of timesteps per rotation, vary as indicated

l1 l2 l1 lmin lmax

(a) Cross-polar flow: a ¼ p=2, Dt ¼ ð256=85ÞDt0, 85 timesteps

PSM 0.04330 0.02898 0.02325 �0.01094 �0.00639
PPM 0.05306 0.03373 0.02700 �0.01369 �0.00654
PSM-M 0.03281 0.02560 0.02352 0 �0.01616
PPM-M 0.04976 0.04888 0.06181 0 �0.05460

(b) Equatorial flow: a ¼ 0, Dt ¼ ð256=36ÞDt0, 36 timesteps

PSM 0.01124 0.00890 0.00875 �0.00733 �0.00196
PPM 0.01732 0.01276 0.01148 �0.00993 �0.00231
PSM-M 0.00719 0.00666 0.01140 0 �0.01099
PPM-M 0.03278 0.03355 0.04027 0 �0.04002

(c) Diagonal flow: a ¼ p=4, Dt ¼ ð256=64ÞDt0, 64 timesteps

PSM 0.02055 0.01279 0.00952 �0.00754 �0.00238
PPM 0.03024 0.01792 0.01258 �0.01034 �0.00328
PSM-M 0.01246 0.00978 0.01630 0 �0.01297
PPM-M 0.03255 0.03690 0.07245 0 �0.06921

(d) Quasi-cross-polar flow: a ¼ p=2� 0:05, Dt ¼ ð256=17ÞDt0, 17 timesteps

PSM 0.02394 0.01614 0.01201 �0.00679 �0.00255
PPM 0.02606 0.01721 0.01230 �0.00774 �0.00297
PSM-M 0.01978 0.01593 0.01516 0 �0.01243
PPM-M 0.02428 0.02110 0.03042 0 �0.02701



(Fig. 3). However PSM-M maintains a better defined slot than PPM-M does (cf. Fig. 3(c) with Fig. 3 (d)),
particularly for its opening at the base of the cylinder and for the maintenance of the height of its rear bridge.

3.3. 2D transport on a sphere

3.3.1. Solid-body rotation of a cosine hill on a sphere

This is the cosine-hill problem of Section 3(a) of [19]. It consists of the solid-body rotation of a bell-shaped
hill about an axis making an angle a with the polar axis of the sphere. The parameter values are (see [19] for
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parameter definitions): N k ¼ 128, N/ ¼ 64 (number of ECV’s in k and / directions, respectively); R ¼ 7p=64
(radius of the hill’s base); and ðk0

c ;/
0
cÞ ¼ ðp=2; 0Þ (position of the hill’s center at initial time).

The timestep required to complete one rotation in 256 timesteps (as in [12,19,24]) is denoted by Dt ¼ Dt0,
and it corresponds to a meridional Courant number of C/ ¼ 0:5 when the wind is in the pole-to-pole direction.
A series of integrations using this timestep has been performed for various rotation axes corresponding to: (a)
cross-polar flow ða ¼ p=2Þ; (b) equatorial flow ða ¼ 0Þ; (c) diagonal flow ða ¼ p=4Þ; and (d) quasi-cross-polar
flow ða ¼ p=2� 0:05Þ. Errors after one rotation are summarised in Table 3 for these integrations. The evolu-
tion of the errors throughout the integration for the case of a ¼ p=2 is shown in Fig. 4. Consistent with the
above findings for solid-body rotation of a cosine hill on a plane, it is seen that the PSM/ PSM-M results
are again more accurate than the PPM/PPM-M ones for all error measures, and that PSM-M is significantly
more accurate than PPM-M.

Further integrations have also been performed using the same rotation axes, but with a selection of time-
steps that give zonal and meridional Courant numbers as large as Ck � uDt=ðDk cos /Þ ¼ 64 and
C/ � vDt=D/ ¼ 7:5, respectively. Errors after one rotation are summarised in Table 4 and correspond to:
(a) cross-polar flow ða ¼ p=2Þ with Dt ¼ 256Dt0=85; (b) equatorial flow ða ¼ 0; Dt ¼ 256Dt0=36Þ; (c) diagonal
flow ða ¼ p=4; Dt ¼ 256Dt0=64Þ; and (d) quasi-cross-polar flow ða ¼ p=2� 0:05; Dt ¼ 256Dt0=17Þ. Results
for the four associated PSM-M integrations are displayed in Fig. 5. It is seen from Table 4 that the PSM/
PSM-M results are again more accurate than the PPM/PPM-M ones for all error measures. Not only are
Fig. 6. Results of PSM-M at times t ¼ 3 and t ¼ 6 for smooth deformation of two vortices on a sphere: (a) PSM-M at t ¼ 3 (64 timesteps);
(b) analytic solution at t ¼ 3; (c) PSM-M at t ¼ 6 (128 timesteps); and (d) analytic solution at t ¼ 6. All panels have 20 equally spaced
contours (contour interval = 0.05) from 0.5 to 1.5 (contours are dashed when less than 1.0, and full when greater than or equal to 1.0).
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all four methods stable at large Courant number, the errors are generally smaller because of reduced smooth-
ing due to the reduced number of remappings needed to perform one rotation.

3.3.2. Smooth deformation of two vortices on a sphere
This is the generalization of Doswell’s problem [25] of [11] and Section 3(b) of [19]. The parameter values

are (see [19] for parameter definitions): N k ¼ 128, N/ ¼ 64 (number of ECV’s in k and / directions, respec-
tively); Dt ¼ 3=64 (timestep); r0 ¼ 3 (radial distance); and d ¼ 5 (characteristic width). The number of time-
steps is N t ¼ 64 for t ¼ 3 and N t ¼ 128 for t ¼ 6.
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Fig. 7. Difference between analytical and numerical solutions using: (a) PSM-M and (b) PPM-M att¼3; and (c) PSM-M and (d) PPM-M6, for smooth deformation of two vortices on a sphere. Panels (a) and (b) have 4 equally spaced contours between�0.02 and +0.02,Table 6Comparative errors att¼2:5 for non-smooth deformation of a vortex on a sphere

l2 l1

lmin lmaxPSM 0.04686 0.13797 1204434 �0.23691 0.23970PM 0.05104 0.15009 1202782 �0.28812 0.28935-M 0.03800 0.13707 1213160 �0.101451 0.09511-M 0.03997 0.14160 1208703 �0.05230 0.04266
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The errors of PSM, PPM, PSM-M and PPM-M for this problem at time t ¼ 6 are summarised in Table 5.
Examination reveals that PSM/PSM-M are again more accurate than PPM/ PPM-M for all error measures,
and the effect of the monotonic filter is small due to the relative smoothness of the problem. The analytic solu-
tion, together with the PSM-M results, is displayed in Fig. 6 at times t ¼ 3 and t ¼ 6, with close agreement
being observed between them at both times. Differences between the analytical and numerical solutions using
both PSM-M and PPM-M are displayed in Fig. 7.

3.3.3. Non-smooth deformation of a vortex on a sphere

This is the non-smooth deformational flow problem of [26] and Section 3(c) of [19]. The parameter values
are (see [19] for parameter definitions): N k ¼ 128, N/ ¼ 64 (number of ECV’s in k and / directions, respec-
tively); Dt ¼ 2:5=64 (timestep): c ¼ 3=2 (stretching parameter), and d ¼ 0:01 (characteristic width).
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Fig. 8. Results at t ¼ 2:5, projected on the plane tangent to the vortex center, for non-smooth deformation of a vortex on a sphere:
(a) PSM; and (b) PSM-M.
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The errors of PSM, PPM, PSM-M and PPM-M for this problem are summarised in Table 6, and generally
lead to similar conclusions as those drawn from the other problems examined. However, whilst the l1 and l2
errors are a bit smaller for PSM/ PSM-M when compared with those of PPM/ PPM-M, the l1 errors are a bit
larger, as are the lmin and lmax errors for PSM-M with respect to those of PPM-M. The PSM and PSM-M
solutions at t ¼ 2:5, projected onto a plane tangent to the vortex center (see [26] for details), are displayed
in Fig. 8 and the analytical solution in Fig. 9. It is seen that the base of the vortex wall is better defined when
PSM’s monotonic filter is activated.

Note that despite applying the monotonicity filter, there are still undershoots and overshoots, as evident
from Table 6. This is because SLICE works by remapping the mass field. Therefore, in order that a global
minimum (qmin) or a global maximum (qmax) of density be retained, SLICE would need to know the relation-
ship between mass and density (i.e. the volume) when it is performing the conservative remapping steps.
A crucial advantage of SLICE, in terms of computational efficiency, is that during these remapping stages
it does not know the volume associated with an element of mass. Only once all the conservative remappings
are complete is the density computed by dividing the mass by the Eulerian volume, which is known and
invariant in time. A consequence is that, while the monotonicity filter can preserve the appropriate minima
and maxima of the mass during remapping, this does not guarantee that the final density is similarly
constrained.

4. Conclusions

The parabolic spline based remapping reported in [22] has been successfully combined with the SLICE
flow-dependent splitting strategy for two-dimensional conservative transport problems [18,19,23]. The result-
ing scheme makes the possibility of higher-dimensional remapping with high-order reconstructions, without a
prohibitive computational cost, a reality. To assess the performance of the present scheme in a meteorological
context, standard tests in two-dimensional Cartesian and spherical geometries have been considered. Results
show that: (i) SLICE with either of the PSM and PPM remappings gives good results; (ii) it does so without
the need to resort to more complex and computationally expensive multi-dimensional remappings; and
(iii) using the more efficient PSM remapping generally leads to more accurate results than using PPM.

A further advantage of the SLICE methodology is that its efficiency increases when applied to the transport
of an increasing number of physical/chemical species, since only one set of intersection points need be com-
puted: hence this overhead can be amortised over all species rather than just a single one.
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